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bstract

ew data sets of crack propagation in lead-zirconate-titanate DCB specimens under cyclic electric loading combined with a constant mechanical
oad have been obtained. Both an increasing mechanical load as well as an increasing field amplitude resulted in an enhanced crack propagation
ate. The experiment was modelled with a Finite Element Analysis that used special crack tip elements and assumed a finite permeability of the

rack. The calculations revealed a dielectric crack closure effect, explaining the experimentally observed threshold of fatigue crack growth for the
lectric load. Fracture quantities suitable for cyclic loading by electric fields above the coercive field were discussed and a Mode-IV intensity factor
onsidered as appropriate. The resulting correlations were applied to the experimental results and a power law relationship for the crack growth
ate versus the range of the Mode-IV intensity factor was found.
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. Introduction

Nowadays ferroelectric ceramics are used in a wide vari-
ty of applications such as fuel injection valves, transducers or
emory devices (FeRAMs). Depending on the application, the

irect or indirect piezoeffect is exploited, therefore the mate-
ial is subjected to cyclic or static mechanical, electrical or
ombined electromechanical loading. Under these loading con-
itions, micro- or macrocracking can occur in the material and
ventually lead to failure of the device.1 In this paper, the phe-
omenon of macrocrack propagation in a ferroelectric material
nder purely cyclic electric fields or cyclic electric fields in com-
ination with a static mechanical load is investigated.

Compared to fatigue crack-growth in structural ceramics
nder cyclic mechanical loading, the failure mechanism in elec-
rically cycled ferroelectrics results from inelastic deformations
n the fracture process zone causing stresses at the crack tip.

hese stresses induce a stress intensity factor which reaches the

racture toughness periodically. Thus, crack growth is not sub-
ritical on the microstructural level. The spontaneous strain and

∗ Corresponding author. Tel.: +49 3731 392699; fax: +49 3731 393455.
E-mail address: Andreas.Ricoeur@imfd.tu-freiberg.de (A. Ricoeur).
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hanges of polarization are caused by domain wall motion which
s due to ferroelectric/ferroelastic domain switching. Mechanical
ycling of ferroelectrics involves both mechanisms of classical
ubcritical crack growth (e.g. stress corrosion) and effects due to
omain switching. However, interpreting experimental studies
y different authors,2–4 classical crack propagation mechanisms
eem to dominate there. Therefore, our investigations focus on
lectric cycling.

First works on this topic were performed in the 1990s5–9

ith cracks emanating from Vickers indents. In later works,
hrough-thickness cracks were used.10–12 Cyclic electric fields
f different field strengths were applied and crack growth was
bserved mainly in the direction perpendicular to the electric
eld. It was found that a certain field level is needed to be sur-
assed in order for a crack to propagate. This level differed
lightly from experiment to experiment but usually lay above
he coercive field strength of the respective material. In one
ase, crack propagation was also observed for lower fields.9

enerally, the crack growth rate was observed to increase with
ncreasing applied field amplitude but to decrease with increas-

ng cycle numbers.

Crack propagation under cyclic mechanical loading in PZT
as only been studied by few groups.2,13 Jiang and Sun applied
constant electrical field in addition to the cyclic mechanical
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oading and reported a power-law relationship between the crack
rowth rate and the amplitude of the mechanical energy release
ate. Salz et al.2 used static and cyclic mechanical loads and
lso observed a power-law relationship between the cyclic load
mplitude and the crack growth rate. The approach of describing
he crack growth rate in piezoelectric materials with a Paris law
elationship is based on results from theoretical modelling.14

To date, no experiments have been performed with the com-
ination of a static mechanical and a cyclic electrical load. For
ur study, a Double Cantilever Beam (DCB) specimen is used
hich can be loaded by an alternating electric field perpendic-
lar to the plane of crack propagation and a mechanical force
roducing a Mode-I crack opening. In contrast to cracks ini-
ialized by Vickers indentations, a through-thickness crack in

fracture mechanics specimen provides reproducible loading
onditions and predictable crack paths. Experiments on such a
pecimen are necessary for an appropriate evaluation of the data
ithin a fracture mechanics framework and for the derivation of
transferable crack growth law.

A numerical analysis of the coupled electromechanical field
roblem is performed accounting for a limited electrical per-
eability of the crack. It reveals the physical nature of a crack

losure effect, which is responsible for cracks not growing under
ure electrical loads below the coercive field. In order to have
n objective, geometrically-independent characterization of the
rack tip loading, a fracture quantity is subsequently calcu-
ated. Since domain switching is not restricted to the crack tip
one (large scale switching), and since the material exhibits a
ronounced hysteretic behavior during a loading cycle, the appli-
ation of one of the classical fracture mechanical quantities is
ot obvious.

In the experiments, different combinations of mechanical
nd electrical loads were used and the crack propagation rates
easured in each case. Together with the numerical calcu-

ations a general fatigue crack growth law for a commercial
ead-zirconate-titanate composition is derived having the same
tructure as the classical Paris Law. Until now, only one similar
racture mechanical evaluation has been done by Fang et al.,12

owever based on simplified analytical calculations.

. Experiment
.1. Material and specimen preparation

Specimens for the experiments were provided by PI
eramics (Lederhose, Germany) in the form of double can-

c
F
w
s

ig. 1. Specimen geometries for (a) cyclic electric loading and (b) combined electro
pecimen thickness is b = 1.5 mm.
eramic Society 27 (2007) 2485–2494

ilever beams, 40 mm × 5 mm × 1.5 mm in dimension. The
aterial PIC151 was used which is a lead-zirconate-titanate

omposition near the morphotropic phase boundary (MPB):
b0.99(Zr0.45Ti0.47(Ni0.33Sb0.67)0.08)O3. It is a commercially
sed, soft ferroelectric material. All specimens were first pol-
shed down to a 1 �m finish on one of their 40 mm × 5 mm
aces. Next they were electroded with a conducting silver paste
“Leitsilber 200”, Hans Wolbring GmbH, Germany) on their
0 mm × 1.5 mm faces. Next they were poled in a bath of sil-
con oil (AK35, Wacker Chemie GmbH, Germany, dielectric
trength > 12 kV/mm) for 20 min at room temperature and a field
trength of 2EC, EC being the coercive field strength of the mate-
ial, which lies around 1 MV/m.

One part of the specimens was cycled purely electrically
ithout an additional mechanical load. A diamond-wire saw

Wells 2040) was used to provide them with a 1 mm-long and
.2 mm-wide through-thickness notch with a radius of 0.1 mm
t the ground. A sketch of the specimen geometry is depicted in
ig. 1a.

The specimens tested under combined loading conditions
ere provided with a hole of 2.5 mm in diameter and an 8 mm-

ong and 0.2 mm-wide through-thickness notch (see Fig. 1b for
sketch). Next they were one by one subjected to one half-cycle
f an electric field of 1.5EC opposite to the poling direction. This
esulted in a crack “popping” into the specimen from the notch,
he crack faces being perpendicular to the electric field. The
ength of this crack was 0.5 mm with a variation from specimen
o specimen of ±50 �m. Then the specimens were set aside for
period greater than 24 h in order for any relaxation processes

nd backswitching to occur before the crack propagation exper-
ments were conducted.

.2. Experimental set up and measurements

One specimen at a time was placed into a container filled
ith silicon oil (see Fig. 2a). This provided protection against

lectrical breakdown. In addition, a thin glass plate covered the
pecimen. The container with the specimen was then placed
nderneath an optical microscope (Leica DM LM) onto an
-Y-stage. Crack lengths were measured optically with a res-
lution of 5 �m. For the generation of the sinusoidal elec-
onnection to a HV power supply (HCB 500 M—10,000,
.u.G. Elektronik GmbH, Germany) was used. The sample
as contacted at its unnotched end by means of two metal

prings.

mechanical loading with a mechanical preload and a cyclic electric field. The
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Fig. 2. (a) Schematic of experimental setup. (b) Picture of specim

.2.1. Electrical cycling
A total of 14 specimens was used for the electrical cycling

ith different field amplitudes: one specimen each was cycled
t 0.9, 1.1 and 1.8EC, two specimens each were cycled at 1.2,
.7 and 1.9EC and three specimens each were cycled at 1.3 and
.5EC.

The mean values of the electric fields were zero, thus an
mplitude ratio R = Emin/Emax = −1 prevails. A minimum of 60
inusoidal cycles with a frequency of 1 Hz was applied to each
pecimen. The crack length was measured every five cycles dur-
ng a short (∼5–10 s) break in cycling. It could not be measured
n situ since the specimen moved during cycling due to its trans-
erse contraction.

.2.2. Mechanical preload + electrical cycling
The combined loading tests consisted of a static mechanical

oad causing a constant Mode-I stress intensity factor ranging
rom 0.1 to 0.5 MPa

√
m and a cyclic electrical load ranging from
.3 to 1.7EC. The intrinsic fracture toughness of the material is
bout 0.77 MPa

√
m.15 A total of 29 different combinations of

echanical and electrical load were used which are displayed
n Fig. 3. One specimen was used per combination.

ig. 3. Combinations of static mechanical load – in terms of stress intensity
actor KI – and cyclic electric load – in terms of the amplitude – used in the
xperiments. For each load combination a new specimen was used.
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r cycling under a constant mechanical and cyclic electrical load.

The mechanical load was applied by fixing one arm of the
antilever with a ceramic pin and connecting the other arm to
30 N load cell using a nylon thread. This is also shown in

ig. 2b. The load was adjusted through a threaded connection and
metal spring. To keep the stress intensity factor constant during
lectrical cycling, the load was adjusted with increasing crack
ength. The respective values were calculated with Kanninen’s
ormula:16

= KI

b h3/2

2
√

3 ã

1

(1 + 0.64 h/ã)
(1)

here P is the applied force, KI the Mode-I stress intensity fac-
or, ã the distance between the point of load application and
he crack tip, 2h the specimen height and b is the specimen
hickness (see Fig. 1). This formula is a very good approxima-
ion, if the crack tip does not approach the end of the specimen
y less than 2 h and if a/h > 2. Due to the short crack lengths
nvestigated and the sufficiently long notch, this was always
uaranteed.

.3. Results

In the case of pure electrical cycling, no crack growth
ccurred for field amplitudes below 1.1EC. It was observed that
he primary crack propagated with an approximately constant
rack growth rate during the first 10–30 cycles. The duration of
his so-called “steady-state” varied from specimen to specimen.
n the next stage, one or more secondary cracks formed which
ither propagated sequentially or simultaneously. Generally, a
ecrease in crack growth rate was observed with increasing cycle
umber.

In the case of combined loading, the crack path was observed
o be unstable for combinations of large mechanical and elec-
rical loads. In that case, the crack gradually kinked and the
pecimen broke before 60 electric field cycles were reached.

epresentative results of crack length versus cycle number for
ither one electrical load and different stress intensity factors
r one stress intensity factor and different electrical loads are
isplayed in Figs. 4 and 5. Both an increasing KI as well as an
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Fig. 4. Crack length vs. cycle number for applied stress intensity factors between
0 – purely electrical loading – and 0.4 MPa

√
m. The electrical loading amplitude

was 1.3EC. For KI = 0.3 and 0.4 MPa
√

m the specimens broke due to unstable
crack paths before 60 cycles were reached.

Fig. 5. Crack length displayed vs. cycle number for an applied stress intensity
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actor of 0.3 MPa
√

m and different electric loading amplitudes as denoted in
he figure. For E = 1.3 and 1.5EC, the specimens fractured before 60 cycles were
eached due to unstable crack paths.

ncreasing field amplitude resulted in an increased crack growth

ate.

After both the electrical loading and the combined loading
xperiments, the fracture surfaces were examined in a scanning
lectron microscope and compared to fracture surfaces resulting

i
s
F
c

Fig. 6. Fracture surfaces after electrical loading (left), electrom
eramic Society 27 (2007) 2485–2494

rom static mechanical loading. Exemplary pictures are provided
n Fig. 6. In the electrical and electromechanical loading cases,

ainly transgranular fracture occurred, while under mechani-
al loading, a mixture of trans- and intergranular fracture was
bserved. This might indicate that the fracture mechanism under
lectrical loading is dominant to the fracture mechanism under
echanical loading.

. Fracture mechanical evaluation of the experimental
ata

The measurements in the previous section supply crack
rowth rates for specific loading and poling configurations and
re valid for the specific specimen geometry. For the sake of
unique and objective quantification of the crack tip loading
ithin the range of a fracture mechanics concept, crack growth

ates have to be presented as functions of fracture mechanics
uantities, e.g. K-factors, the energy release rate or the J-integral.
or the specimen and loading conditions of the experiment as
ell as for structures in arbitrary applications, the fracture quan-

ities are calculated using the Finite Element Method.

.1. Discussion of fracture quantities

If domain switching is restricted to a small zone close to
he crack tip (small-scale-switching), concepts of Linear Elastic
racture Mechanics can be generalized for piezoelectric frac-

ure mechanics. In this case, the K-concept is applicable and the
oading of the crack tip can be expressed by a Mode-IV intensity
actor.17 For a DCB specimen with the height 2h and the applied
lectric field E∞

2 the following formula is commonly used.12

E = lim
r→0

(√
2πrE2(θ = 0)

)
= E∞

2

√
2h (2)

2 is the electric field strength in the x2-direction, (r,θ) is
crack tip polar coordinate system (see Fig. 8). However,

ince fatigue crack growth at low electric cycling frequencies
ithout mechanical loading is only observed for electric field
ntensities above the coercive field, the assumption of small-
cale-switching is not applicable. Considering Elastic-Plastic
racture Mechanics, the J-integral can be calculated in the
ase of large-scale inelastic material behavior. However, the

echanical loading (center), mechanical loading (right).
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-integral for cyclic loading is not path-independent for mate-
ials showing an inelastic dissipative behavior. Its application
herefore is not the appropriate means for a unique characteri-
ation of the crack tip loading.

In contrast to plasticity, where an increasing load leads to
continuous enhancement of plastic strain, in ferroelectrics a

lock-in” is observed, i.e. the microstructural evolution is sat-
rated reaching a specific loading level. Beyond this threshold
oading and unloading follow the same trajectory and the mate-
ial behavior is described by linear constitutive equations of
iezoelectricity, even being a good representation somewhat
elow the saturation point. Thus, during electric cycling with
mplitudes above the coercive field, the specimen is not subject
o material non-linearities during the whole cycle. In Fig. 7 a
oad cycle E(t) is shown schematically starting with an electric
eld pointing into the poling direction. The coercive field EC

s indicated by the horizontal dashed lines. If the electric load
mplitude is within the hatched area (1), small-scale-switching
an be assumed. The cross-hatched areas (2) represent field
ntensities at which the material sufficiently remote from the
rack is always homogeneously poled in the loading direction
nd may be described linearly. The applicability of piezoelec-
ric constitutive equations is justified within the one half of the
oading cycle in which the electric field is aligned with the pol-
ng direction. Physical non-linearities due to domain switching
ominate the material behavior during the small part of the cycle
ndicated by a bold line. It was observed experimentally18 that
his is the point of the cycle, where crack growth sets in. Westram
t al. therefore believe that large-scale switching provides the

riving force for crack initiation. The mechanism is explained in
ef.18 in more detail. However, the crack growth rate was found

o depend on the field amplitude, i.e. on how much larger than EC
he maximum field is. To describe this observation phenomeno-

ig. 7. One electric loading cycle with intervals of linear and non-linear mate-
ial behavior (bottom) and schematic of the course of the electric displacement
ntensity factor (top).
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ogically, the K-concept of Linear Elastic Fracture Mechanics
an be applied to characterize the loading conditions at the crack
ip during the greatest part of the cycle. A Mode-IV intensity fac-
or KIV is introduced characterizing the asymptotic behavior of
he electric displacement D2 in front of the crack tip. Its defi-
ition is similar to KE in Eq. (2) replacing E∞

2 by D∞
2 . Due to

he repeated repolarization, the remote electric field is directed
arallel to the poling direction almost during the whole loading
ycle, leading to an almost permanent positive KIV (see Fig. 7).
herefore, the range �KIV approximately equals Kmax

IV . During
he process of massive domain reorientation the field intensity
actor is not defined since piezoelectric properties are lost. Kmax

IV
eets the requirements of a fracture mechanical quantity giving
unique and transferable characterization of the loading situa-

ion.

.2. Finite element calculations

To calculate field intensity factors and other fracture mechan-
cal quantities for cracks in piezoelectrics, several numerical
echniques based on the Finite Element Method have been
eveloped.19–21 Derived by rudimentary analytical calculations,
q. (2) is considered not to be sufficiently accurate. Particularly
oncerning short cracks the crack length has a non-negligible
nfluence on KIV. Moreover, the electric boundary conditions
n the crack faces should be chosen more carefully thus being
loser to reality. The specimen is assumed to be homogeneously
oled, which is obviously simplifying the nature of the problem.
ore sophisticated calculations could account for the inhomoge-

eous state of polarization in the vicinity of the crack. Anyhow,
o determine KIV, the asymptotic crack tip solution has to be
nown. For an inhomogeneous polarization, those solutions are
are in the literature22,23 and treat special cases which are not
elevant for our problem. The calculation of intensity factors
eglecting the polarization inhomogeneity is well established in
he evaluation of fracture experiments in piezoelectrics under
onstant loading conditions.21,22,24,25 On the other hand, the
lectromechanical energy release rate can be determined, e.g.
pplying the Modified Crack Closure Integral.19,21 The com-
arison of calculations for a crack in a material being on the
ne hand homogeneously poled and on the other hand show-
ng the typical near-crack domain pattern exhibited very little
nfluence on the energy release rate. However, numerical calcu-
ations have shown that a criterion for electrical-load-induced
racture cannot be based on either the electromechanical or the
ure mechanical/electrical energy release rates, since none of
hese quantities correctly reflects the influence of the investi-
ated loading regimes on the crack growth behavior.

Fig. 8 shows the Finite Element model of the specimen used
or combined electromechanical loading. For pure electrical
oading the model is identical except for the hole, which mildly
nfluences the crack tip fields. Due to symmetry, only one half
as to be considered. On the ligament, the nodal boundary con-

itions u2 = 0, φ = 0 are introduced, where u2 is the displacement
n the x2-direction and φ is the electric potential. A generalized
tate of plane strain is assumed for the 2D model, i.e. ∂u/∂x3 = 0,
φ/∂x3 = 0. The crack tip is indicated by the origin of the polar
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Anyway, a/W < 0.1 is the relevant range of parameters, because
the experimental data are within this scope.

In Fig. 10 KIV is plotted versus the normalized electric load
E/EC for different crack lengths and electrical crack face bound-
ig. 8. Finite Element model of one half of the DCB specimen with boundary
onditions and coordinate systems.

oordinate system (r,θ). Shifting the boundary conditions along
1, various crack lengths can be realized with the same mesh. To
alculate field intensity factors for different crack tip positions,
his implies an evenly meshed layer around x2 = 0. The load-
ng is applied by a line force F = P/b and the electrode potential
= Eh.
Both KI and KIV are calculated from displacements u2 and

lectric potentials φ on the crack faces, determined by the FE
nalysis. Using special crack tip elements (CTE) which exhibit a
r-behavior, an accurate calculation of intensity factors is guar-

nteed in connection with the asymptotic piezoelectric crack tip
olution.19,24 It was shown that Eq. (1) is a good approxima-
ion for KI. The Mode-I stress intensity factor hardly depends
n electrical loads. The deviation from the numerical results is
ust a few percent. KIV shows a pronounced dependence on both

echanical and electrical loads.
Following an idea of Hao and Shen,26 the electric field inside

he crack is taken into account imposing a charge density DC
2 on

he crack faces calculated from a body cut

C
2 (x1, x2 = 0) = −κC

φ+(x1) − φ−(x1)

u+
2 (x1) − u−

2 (x1)
(3)

ith the superscripts “+” and “−” standing for the positive and
egative crack faces, respectively and κC being the dielectric
onstant of the slit. In contrast to impermeable (DC

2 = 0) or
ully permeable (φ+ = φ−) crack models, the assumption of an
lectrically limited permeable crack is consistent from the elec-
rostatic point of view. The short notch does not have to be

odelled separately, since it proved not to influence the results
n terms of intensity factors. The numerical realization of this
capacitor analogy” requires an iteration scheme. Several Finite
lement calculations of the boundary value problem have to be
erformed, to make the fields on the crack faces finally satisfy
q. (3).28 Electrostatic tractions on the crack faces29 are not

aken into consideration, though they might have a certain influ-
nce on KIV for small or vanishing mechanical loads. Also, the
ccumulation of free charges on the crack faces is neglected,
ince the specimen is embedded in silicon oil.

The crack slit is modelled as a dielectric with the permittivity
f vacuum, i.e. κC = κrκ0 = 8.854 × 10−12 C/(V m) (κr = 1). The
ilicon oil actually has a relative permittivity of 2.5, but mea-
urements of Schneider et al.27 found an increased permittivity
f up to 40 in an indentation crack. They attributed this fact to

ossible crack bridging or a reduced potential difference due
o charge compensation at the crack surfaces. Since the dielec-
ric state is apparently not well-defined, the choice of vacuum
ermittivity seems as reasonable as any other.

F
f
a

ig. 9. Electric displacement intensity factor vs. normalized crack length for
ifferent crack face boundary conditions and electric loads.

Fig. 9 shows plots of the electric displacement intensity fac-
or KIV versus the crack length a related to the specimen length

(see Fig. 1). Different crack lengths between 0.5 and 35 mm
ndicated by the squares and circles have been investigated. Pure
lectric loading with field intensities of 1.3 and 1.9EC is consid-
red. Besides the limited permeable crack boundary condition
q. (3), an impermeable crack with the boundary condition
C
2 = 0 has been investigated, assuming that the electric field

otally circumvents the crack. This simplifying model overes-
imates the electric field concentration near the crack tip thus
eading to higher values of KIV. For a/W > 0.1 KIV does not
epend on the crack length, so the simple Eq. (2) could be applied
n principle. The straight line at KIV ≈ 2.9 C m−3/2 comes from
q. (2) with E∞

2 = 1.3EC. KIV in general can be calculated
rom a linear combination of KI and KE including the elastic,
ielectric and piezoelectric constants of the material. Compar-
ng this value to the numerical result for an impermeable crack
oundary condition, a difference of approximately 12% is found.
ig. 10. Electric displacement intensity factor vs. electric load for different crack
ace boundary conditions and crack lengths. The impermeable line is valid for
/W > 0.1.
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supplied for the calculation of KIV. These correlations have
been derived from Finite Element analyses interpolating discrete
numerical values for several crack lengths and loads within the
relevant range.
I. Westram et al. / Journal of the Europ

ry conditions. As in the previous figure, the specimen is not
oaded mechanically. In all cases the electric displacement inten-
ity factor does linearly depend on the electric far field. With
mpermeable crack faces the line goes through the origin of
he coordinate system, i.e. KIV = 0 for a vanishing load. The
ne exhibited in the graph holds for longer cracks a/W > 0.1. In
he limited permeable case (solid line, circles) a parallel shift
f the plot along the load-axis is observed. For shorter cracks
solid line, squares) the point of intersection with the abscissa
clo = 0.92EC is unchanged, just the slope is different. Physi-
ally, Eclo is the threshold of an electrostatic crack closure effect.
t essentially depends on the dielectric constants and represents
n electric load which has to be exceeded to exhibit a crack driv-
ng mechanism in terms of a positive KIV. Below Eclo the crack
emains closed or in the absence of the implementation of a
ontact algorithm the crack faces may even overlap numerically
nd a negative intensity factor prevails. The latter case does not
ake sense from the physical point of view, so KIV is always zero

elow Eclo and the electrical and mechanical fields are homo-
eneous not exhibiting any crack tip singularity. The threshold
or crack growth being close to the coercive field is confirmed
y the experiment. It should be kept in mind that this result is
ased on piezoelectric calculations which do not contain EC as
parameter. Mathematically, a bifurcation is the reason for the

rack closure effect. The Hao and Shen model always yields two
olutions satisfying Eq. (3), one being excluded due to physical
nterpretations. For a pure electrical loading DC

2 is similar to D∞
2

f E∞
2 < Eclo. For a crack in an infinite domain DC

2 is exactly
dentical to D∞

2 . Thus, there is a homogeneous electric field
ithin the body, the crack is closed and the electric potential is

ontinuous. Beyond the threshold the solution path bifurcates
ielding (i) the closed-crack solution DC

2 = D∞
2 and (ii) a sec-

nd electrostatically consistent charge density DC
2 = const. DC

2
n case (ii) does not depend on the loading, since both electric
otential and mechanical displacement on the crack faces grow
ikewise with increasing D∞

2 . According to Eq. (3), the magni-
ude of DC

2 only depends on the dielectric constant of the crack
C. Solution (ii) cannot occur below the point of bifurcation, i.e.
C
2 = D∞

2 , because the magnitude of crack face charges must
ot exceed that of the loading. Only the case (ii) goes along with
crack opening displacement and a crack tip singularity allow-

ng for the interpretation of crack growth mechanisms at pure
lectrical loading.

In Figs. 11 and 12 for the combined load case KIV is plotted
ersus the electric field intensity and the Mode-I stress intensity
actor, respectively. Still, there is a linear dependence on the elec-
ric load. The mechanical load opens the crack thus decreasing
he electrical permeability of the slit. Therefore, an increasing

I enhances the electric displacement intensity factor asymp-
otically approaching the impermeable state. This circumstance
eads to a stepwise rise of the crack growth rate as soon as even

small mechanical load is imposed (see Fig. 4). The relation
etween KIV and KI is non-linear. From Fig. 11 the thresholds

or crack closure are obtained by extrapolation of the straight
ines to the abscissa. Without a mechanical load Eclo is 0.9EC.
he slight difference to Eclo from Fig. 10 is due to the Finite
lement models which differ in the hole for the mechanical

F
f

ig. 11. Electric displacement intensity factor vs. electric load for different
echanical loads represented by the Mode-I stress intensity factor KI.

orce application. In the combined Mode-I/IV case a crack clo-
ure effect only exists for small mechanical loads, leading to
threshold value which may be significantly smaller than the

oercive field. For the same values of KI, Fig. 11 has been cal-
ulated with different crack lengths and the respective forces P
eading to identical results. In Fig. 12, two crack lengths a = 10
nd 30 mm are depicted, where a = 0 is selected at the leading
dge of the specimen. The forces P applied to the Finite Element
odels for different crack lengths have been determined from
q. (1). Thus, the close distances between squares and circles
re a measurement for the accurateness of Eq. (1).

.3. Correlations for the electric displacement intensity
actor

To avoid the effort of performing numerical FE calcula-
ions for each experimental data set, closed-form equations are
ig. 12. Electric displacement intensity factor vs. Mode-I stress intensity factor
or different electric loads and crack lengths.
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with A = 106.33 and m = 2.48. The same data points are plotted
in Fig. 14 with different symbols for different stress intensity
factors. In the Paris Law there is no explicit dependence on
492 I. Westram et al. / Journal of the Europ

From the model for pure electrical cycling the following equa-
ion is obtained:

IV =
(

1.85
√

hκ33(E∞
2 − Eclo)

)

×
(

1 − 1

(1 + 12(a/W))6

)
; E∞

2 ≥ Eclo (4)

The dielectric constant of the solid κ33 was introduced to
btain coherent units and is 21.2 × 10−9 C/(V m) for PIC151.
he relative crack length a/W has been introduced in Fig. 9 and
h = 5 mm is the specimen height. The threshold Eclo has been
alculated to be 0.92 EC and is used for the fracture mechanical
valuation of the experimental data. This value is sensitive to
he choice of dielectric constants of the solid and towards the
rack permeability used in the model. Moreover, crack closure
ffects due to domain switching could have an effect on Eclo.
herefore, under different circumstances it might differ from

he observed threshold of electric field induced fatigue crack
rowth. In this case, it is appropriate to adopt the experimental
alue of Eclo, which produces a parallel shift of the solid lines
long the abscissa in Fig. 10.

For the case of combined loading, the following equation is
ound:

IV = C1(KI)(E
∞
2 − Eclo) + C2(KI) (5)

ith the variables C1 and C2 depending on the Mode-I stress
ntensity factor which is calculated from Eq. (1):

1(KI) =
(

m1

1 + m2KI/(c33
√

h)
+ m3 + m4

KI

c33
√

h

)
κ33

√
h

2(KI) =
(

n1

1 + n2KI/(c33
√

h)
+ n3 + n4

KI

c33
√

h

)
e33

√
h

nd the dimensionless constants m1 to m4 and n1 to n4 being

m1 = 3.77 × 10−1, n1 = −1.5 × 10−3

m2 = 138745, n2 = 40850

m3 = 1.468, n3 = 1.5 × 10−3

m4 = 492, n4 = 3.98

In Eq. (5), the crack closure threshold for purely electrical
oading Eclo = 0.9EC is inserted. In contrast to the case of a
ingle-mode electrical loading, governed by Eq. (4), the elec-
ric far field may now be smaller than Eclo but must not lead to
egative intensity factors. The elastic and piezoelectric constants
or PIC151 are c33 = 105 MPa and e33 = 15.1 C/m2. Applying the
qs. (4) and (5) the relative error within the relevant parameter
ange is below 3.5%. A much simpler correlation with the same
ccuracy is obtained, if the mechanical loading is restricted to
I ≥ 0.2 MPa

√
m:

IV = c1κ33
√

h(E∞
2 − Eclo) +

(
c2 + c3

KI

c33
√

h

)
e33

√
h

(6)
F
s

ig. 13. Double-logarithmic plot of crack growth rate vs. �KIV for different
pplied field amplitudes.

ith only three empirical constants c1 = 1.556; c2 = 8.26 × 10−4;
3 = 6.76.

.4. Fatigue crack growth law

With the correlations (4) and (5) the experimental results
ere evaluated. Only the steady-state of crack propagation was

onsidered and the crack growth rate was determined after 1 mm
f crack propagation. For low mechanical and electrical loads,
he crack growth rate was smaller than 0.001 mm/cycle and not
onsidered for evaluation.

In Figs. 13 and 14, the crack growth rates are displayed versus
KIV in double-logarithmic plots. In Fig. 13 different applied
eld amplitudes are marked by different symbols. The data can
e described by a Paris-power-law relationship in the form of

da

dN
= A �Km (7)
ig. 14. Double-logarithmic plot of crack growth rate vs. �KIV for different
tress intensity factors between 0 – purely electrical loading – and 0.5 MPa

√
m.
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I. The whole influence of the mechanical load is implicitly
ncorporated in its effect on KIV.

. Summary and conclusions

The paper provides investigations on the growth of fatigue
racks in ferroelectrics under low-cycle and high-amplitude
oading conditions. Thus, crack growth rates are comparatively
igh. In contrast to other work available on this topic, the empha-
is has been put on a careful and sophisticated numerical eval-
ation of the experimental data within the scope of a fracture
echanics concept. Crack growth rates are provided versus an

lectric displacement intensity factor, making the results inde-
endent of the specific geometry and loading conditions of the
xperiments.

Fatigue crack growth in PZT has been investigated experi-
entally. In contrast to previous work by different authors who

pplied cyclic electric fields, a constant mechanical load has
een superimposed, effecting an additional Mode-I crack open-
ng. For pure electrical loading, the amplitude has to exceed a
hreshold value which is slightly above the coercive field to evoke
atigue crack growth. Moreover, it was observed that the crack
rowth rate is enhanced by increasing the electrical load ampli-
ude and decreases with increasing crack extension. Even small

echanical loads lead to a stepwise rise of the crack growth rate
nd reduce the threshold for an electrically driven crack to a
alue below the coercive field.

To provide conditions for a quantitative fracture mechani-
al evaluation of the experimental data, DCB specimens have
een used for the experiments. In spite of some similarities
etween elastic–plastic and ferroelectric material behavior, there
re fundamental differences. Thus, the K-concept of Linear Elas-
ic Fracture Mechanics was found to be an appropriate means
o describe crack tip loading, even if large-scale switching-
onditions prevail. Thus, an electric displacement intensity fac-
or KIV was chosen as the appropriate fracture quantity for all
oad cases. The effect of the Mode-I crack opening is implicitly
aken into account by the dependency of KIV on KI. A power
aw relating the crack growth rate and �KIV was derived for
ombined electromechanical loading conditions.

The calculation of fracture quantities required a numerical
olution of the piezoelectric boundary value problem. Based on
inear constitutive equations, the Finite Element Method was
pplied to calculate fields within the specimen for the maxi-
um values of an electric load cycle, where a microstructural

omain evolution is either saturated (Emax > EC) or does not
xist (Emax < EC). Adopting a capacitor analogy model, the crack
aces were assumed to provide limited permeability from the
ielectric point of view. A crack closure effect was revealed from
he simulations, which explains the observed threshold value of
lectric load amplitudes being necessary to evoke fatigue crack
rowth. Future work could improve the accuracy of the numeri-

al calculations accounting for an inhomogeneous poling state of
he material, modelling electrostatic tractions on the crack faces
nd choosing the dielectric constant of the crack slit according
o an appropriate model.
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anism of electric fatigue crack growth in lead zirconate titanate. Acta Mater.,
submitted for publication.

9. Kuna, M., Finite element analyses of crack problems in piezoelectric struc-
tures. Comp. Mater. Sci., 1998, 13, 67–80.

0. Abendroth, M., Groh, U., Kuna, M. and Ricoeur, A., Finite element-
computation of the electromechanical J-Integral for 2-D and 3-D crack
analysis. Int. J. Fract., 2002, 114, 359–378.

1. Kuna, M. and Ricoeur, A., Theoretical investigation of fracture behaviour
in ferroelectric ceramics. Fract. Mech. Ceram., 2002, 13, 63–82.

2. Kemmer, G., Berechnung von elektromechanischen Intensitätsparametern

bei Rissen in Piezokeramiken. VDI Fortschritt-Berichte, 2000, 261, 20–
23.

3. Chen, T.-H., Chue, C.-H. and Lee, H.-T., Stress singularities near the apex
of a cylindrically polarized piezoelectric wedge. Arch. Appl. Mech., 2004,
74, 248–261.



2 ean C

2

2

2

2

2

494 I. Westram et al. / Journal of the Europ

4. Ricoeur, A. and Kuna, M., Influence of electric fields on the fracture of
ferroelectric ceramics. J. Eur. Ceram. Soc., 2003, 23, 1313–1328.

5. Heyer, V., Schneider, G. A., Balke, H., Drescher, J. and Bahr, H.-
A., A fracture criterion for conducting cracks in homogeneously poled

piezoelectric PZT–PIC151 ceramics. Acta Mater., 1998, 46, 6615–
6622.

6. Hao, T. H. and Shen, Z. Y., A new electric boundary condition of elec-
tric fracture mechanics and its applications. Eng. Fract. Mech., 1994, 47,
793–802.

2

eramic Society 27 (2007) 2485–2494

7. Schneider, G. A., Felten, F. and McMeeking, R. M., The electrical potential
difference across cracks in PZT measured by Kelvin Probe Microscopy and
the implications for fracture. Acta Mater., 2003, 51, 2235–2241.

8. Wippler, K., Ricoeur, A. and Kuna, M., Towards the computation of elec-

trically permeable cracks in piezoelectrics. Eng. Fract. Mech., 2004, 71,
2567–2587.

9. Kemmer, G. and Balke, H., Kraftwirkung auf die Flanken nichtleitender
Risse in Piezoelektrika. GAMM98, short communications in mathematics
and mechanics, (ZAMM), Vol. 79 S2, 1999. p. 509–10.


	Fatigue crack growth law for ferroelectrics under cyclic electrical and combined electromechanical loading
	Introduction
	Experiment
	Material and specimen preparation
	Experimental set up and measurements
	Electrical cycling
	Mechanical preload+electrical cycling

	Results

	Fracture mechanical evaluation of the experimental data
	Discussion of fracture quantities
	Finite element calculations
	Correlations for the electric displacement intensity factor
	Fatigue crack growth law

	Summary and conclusions
	Acknowledgements
	References


